ADY37127

RFOS

v

-

STUDY CF ACOUSTIC-GRAVITY WAVE GENERATION
BY NUCLEAR DETONATIONS

By

B. L. Murphy
A. D. Zalay

MI'. AUBURN RESEARCH ASSOCIATES, INC.
385 Elliot Street
llewton Upper Falls, Massachusetts 02164

~-DDC
P2 e

FEB 23 1972

CIU .
B
Sponsored by
Advanced lnufeh Projects Agency
ARPA Order No. 1502 *

Monitored by

Alr Force Office of Scientific Research
under Contract No. F44620-71-C-0086

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

Springlield, Va 12151

30 September 1971

roved for public releas®}
dtstribution unlimited.



BEST
AVAILABLE COPY



d_

Security Classification

DOCUMENT CONTROL DATA - R& D

Sacurity glege: {f: of title, body of sbatract and indexing annotstion must be entered when ihe oversll report 18 clessilisd)
1. ORIGINATING ACTIVITY /Corporate suthor; 28. REPORT SECURITY CLASSIFICATION
MI. AUBURN RESEARCH ASSOCIATES, INC. Unclassiflied
385 Elliot Street *."CREU)
Newton Upper Falls, Massachusetts 02164

3. REPORT TITLE

STUDY OF ACOUSTIC-GRAVITY WAVE GENERATION BY NUCLEAR DETONATIONS

4 DESCRIPTIVE NOTES (Tvpe of report end inclusive detes)

Scientific--===v-e--- Interim (Semi-Annual Technical) 2/16/71-8/16/71

S. AUTHORIS) (Firat neme, middie initiel, lest nams)

Brian L. Murphy
Andrew D. Zalay

6 REPORT DATE o. TOTAL NO OF PAGES ¥5. NO. OF REFS

30 September 1971 e ] (3%

82 CONTRACY OR GRANT NO F44620“71"C-0086 98. ORIGINATOR'S REPORT NUMBERIS'

h. PROJECT NO. A0 1502

9b. OTHER REPOAT NOIS! (Any other numbers thet may be sssigrad
th:a raport)

10 DISTRIBUTION STATEMENTY

Approved for public release; distribution unlimited,

17 SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY
Afir Force Office of Scientific Research
TECH, OTHER 1490 Wilson Boulevard (NPG)
Arlington, Virginia 22209

13 ABSTRACT

Three different acoustic phenomena relevant to nuclear test detection
and diagnostics are discussed in this report: (1) The generation of long period
(3-10 minute) acoustic-gravity waves is analyzed in terms of a l.amb mode propa-
gation theory. One result of the analysis is that yield-amplitude proportionality
is predicted to break down for very large yield detonations. (2) The generation
and propagation of short period (1-60 seconds) acoustic pulses is treated by
means of weak shock theory. Yield and height of burst scaling laws are derived
for the far-field period. The dependence of period on atmospheric conditions
and propagation path is also discussed. (3) The variation of long range Rayleigh
wave amplitude with yield and height of burst {s discussed fcr detonations at
lower altitudes than previously treated.

DD ":::n'473 Unclassified

Secunity Classification




an%gggitieg
ecurity Classification

becurity Class

8 LINK A LINK B LINK C
KEY WORDS ROLE wT ROLE wr ROLL wy
Acoustic-Gravity Waves
Infrasonics
Nuclear Expiosions
Rayieigh Waves
e
Unclassified

etion




STUDY OF ACOUSTIC-GRAVITY WAVE GENERATION
BY NUCLEAR DETONATIONS

By

B. L. Murphy
A. D. Zalay

MT. AUBURN RESEARCH ASSOCLATES, INC.
385 Ell{io: Street
Newton Upper Falls, Massachusetts 02164

Sponsored by

Advarced Research Projects Agency
ARPA Order No. 1502

Monitored by

Alr Force Office of Scientific Research

Program Code: 1F10

Effective Date of Contract: 16 February 1971
Contract Expiration Date: 15 April 1972

Amount of Contract Dollars: $78,4435.00

Contract No: F44620~71-C~0086
Principal Investigator: Dr. Brian L. Murphy
Telephone Number: (617) 969-7150

Type of Report: Semi~annual Technical
Period Covered: 16 February 1971 through

31 August 1971

30 September 1971



FORWARD

We wish to acknowledge many helpful discussions
with Drs. S. L. Kahalas and A. D, Pierce during

the course of this work.



ABSTRACT

Three different acoustic phenomena relevant to nuclear
test detection and diagnostics are discussed in this report:
(1) The generation of long period (3-10 minute) acoustic-gravity
waves is analyzed in terms of a Lamb mode propagation theory.
One result of the analysis is that yield-amplitude proportionality
is predicted to break down for very large yield detonations.
(2) Tue generation and propagation of short period (1-60 seconds)
acoustic pulses is treated by means of weak shock theory. Yield
and height of burst scaiing laws are derived for the far-field
period. The dependence of period on atmospheric conditions and
propagation path is also discussed. (3) The variation of long
range Rayleigh wave amplitude with yield and height of burst is
discussed for detonations at lower altitudes than previously

treated.
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1. INTRODUCTION

This report is councerned with acoustic disturbances produced
by nuclear detonations which are important 4in the problem of long
range test detection and diagnostics. The phenomena we treat, although
they are different at large distances, all originate in the detonation
blast wave. The basic method of our treatment has been to determine
how the blast wave characteristics, and hence the detonation parameters
such as yield and height of burst, determine the far-field acoustic
disturbance. We have, in addition, attempted to indicate how atmospheric
conditions and propagation path ultimately determine the far-field
disturbance.

Three types of phenomena are considered:

a. In Section 2 we treat long period (3-10 minute) acous*ic distur-
bances in terms of a theory based on Lamb's atmospheric edge mode.
A detailed consideration of how the near-field shock wave evolves
into the Lamb mode suggests that the far~-field amplitude will
increase somewhat faster than directly proportional to yield for
very large yield explosione. The exact yield dependence 1is,
however, determined by direction of propagation and atmospheric

conditions near the burst point.

b. In Section 3 we discuss the dependence of short period (1-60 second)
acoustic signals on source and propagation parameters. We find
that the signal period varies approximately as the cube root of
yield, is relatively independent of burst heighi, and is very much
affected by the direction of propagation relative to the high
altitude winds.

c. In Section 4 we consider the variation of far-field Rayleigh wave
amplitude with yield and height of burst for atmospheric explosions.

This section is primarily an extension of previous work to lower



heights of burst than were formerly considered. Our principal new
finding is that the amplitude for low altitude detonations is a much
more rapidly increasing function of yield than for higher altitude

detonations.

Overall conclusions reached are presented in Section 5.



2. SOURCE MODELS FOR THE EXCITATION OF LAMB'S
ATMOSPHERIC EDGE MODE BY NUCLEAR EXPLOSIONS

2.1 Introduction

The acoustic waveform observed several thousand kilometers
away from a megaton range nuclear detonation begins with several
cycles having a dominant period of from about 3 to 10 minutes. The
amplitude of this portion of the acoustic signal has previously been
predicted to be proportional to explosixnxyieldsl) Recently these first
few cycles of the waveform have been analyzed by Pierce and Poséy(z)
under the hypothesis that the acoustic pulse propagates as the real
atmosphere's counterpart of Lamb's edge mode. In the material which
follows we rely heavily on the Pierce-Posey theory. This theory
appears to be in at least qualitative agreement with test data.(3)
When it has been tested against multimode numerical calculations the
theory has also produced good agreement for the first few cycles of

(2)

the waveform. For our purposes the significant feature of this
theory is that it is analytic. This allows us, for the first time,
to analyze in some detail the relationship between the near-field
shock wave and the resulting far-field waveform.

Specifically we ask the following question: At what distance
from the detonation and in what direction should one utilize the shock
wave parameters to begin a linear propagation theory? Obviously a
linear theory is inadequate when the shock is strong. For a 1 MT
detonation at sea level, for example, the shock becomes weak (the

(4)

relative overpressure is .l) at a distance of about 9 km., Since
this is larger than the sea-level atmospheric scale height, the effects
of atmospheric inhomogeneity might reasonably be expected to play a
role. 1In other words, the weak shock parameters such as relative
overpressure and positive phase duration will be different in different
directions. Therefore we want to know whether a particular portion of
the shock front dominates excitation of the Lamb mode and, if so, we

want to know what the shock parameters are for this portion of the front.



The question of what parts of the shock front are most impor-
tant in determining the far field waveform is rot the only question we
have to answer. The distance at which we match the weak shock to a
linear propagation theory will also make a difference in the far-field
result which the theory predicts. For example, consider the differ-
ence that occurs if we take the horizentally propagating shock wave
from a 1 Ml sea-level explosion at two places: (1) 9 km, where the

4)

relative overpressure is .1, and (2) 58 km where it is .Ol. For a

weak shock in a homogeneous atmosphere ;Rt+ is a constant.(s) 7 is
the peak relative overpressure, R is the distance, and t, is the posi-
tive phase duration. In the present example t, must increase by a
factor of about 1.55 between 9 km and 58 km. The energy in the low
frequency portion of the pulse %1->> Lol which is responsible for
the long period portion of the fur-field waveform, is proportional to
ﬁRt+2. This result follows from Fourier analysis of a weak shock

(6) Since FRt+ is a

profile such as the so-called Glasstone pulse.
constant, the low frequency energy is proporticaal to t, and must also
increase by a factor of 1.55 bdetween 9 km and 58 km. We conclude that
if we chose to match a linear propagation theory to the shock wave at

7 = .01 rather than at .1, we would predict far field amplitudes whiclh
are greater by a factor of 1.55 The difficulty is not that wc have not
gone to small enough m. For a weak shock 7 never becomes so small

that the propagation is linear; that is, the Fourier amplitudes at
different frequencies are never frozen relative to each other. The
energy in the low frequency portion of the pulse continues to increase

which quantity increases asymptotically as vinR

proportional to t,
&)

’
for a horizontally propagating shock.
In the sequel we use the Pierce-Posey theory to investigate
how the far-field waveform evolves from the near-field shock. Specific
conclusions reached a.-: (a) The shock front extending over a number
of scale heights in altitude is of almost equal importance in exciting

Lamb's atmospheric edge mode. A consequence of this fact is that



features peculiar to a limited portion of the shock front cannot domin-
ate the excitation. An example of what we mean by a feature peculiar
to a limited portion of the shock front is the existence of a shock
precursor reglon near the ground within which shock parameters are
drastically altered. This occurs when a low altitude detonation occurs

over a heat absorbing surfaces6)(b) For small yields, the appropriate

distance for miatching increases as Y1/3. where Y is the explosion
yield. For large yields the appropriate distance for matching

Y1/3

fncreases more rapidly than . This produces a yield dependence

in the far-field amplitudes which varies approximately as
2 ]

! 3 Y*

which depends on atmospheric conditions near the burst and on the

[ o o e
Y1 +'-Z '\/ L } for Y > Y*, and as Y for Y < Y*, Typically, Y*,

direction of propagation, is the order of 10 Mt.

In the next section we outline the method used and the major
assunptions made in calculating the far-field Lamb mode amplitude from
the near field shock parameters. The calculation itself is contained
in an appendix.

Then in Section 2,3 we compare the above theoretical prediction (b)
with the test data. While the results of this comparison are not con-
clusive we find that there is indeed a strong indicatfon that on
occasion very large yfelas do produce anomalously large far-field
amplitudes.

Finally, we summarize the results of this study, and indicate
where we believe extensions of the analysis would be most fruitful, in

the conclusions presented in Section 2.4,

2.2 Method of Calculation of the Far-Field Lamb Mode Amplitude

In this section we outline the method used and the major
assumptions made in calculating the far field Lamb mode ®mplitude. The
actual calculation {s done in Appendix A.

The fundamental assumption of the theory, the justification
for which has been discussed by Pierce and Posey, is that the long



period acoustic pulse observed at great distances propagates in the
real atmosphere's counterpart of Lamb's edge mode.

To extract this mode from the near field shock wave we pick
a cylindrical matching radius Ty in a manner described below, and
decompose the shock pressure pulse into a modal sum, one of whosc
terms is the desired Lamb mode. This Lamb mode term is then taken to
propagate lincarly to the observation point, a great circle distance r
from the burst, in accordance with the Lamb mode dispersion cquation.
Because we are primarily interested in modeling the source, we do not
attempt to incorporate a realistic atmospheric model in the theory,
f.e., one which wuld include effects such as acoustic ray refraction.
Horizontal refraction of the Lamb mode may be an important effect, but
this can be treated independently from the source modeling.

To simplify the analysis several assumptions are made con-

cerning the properties of the near field shock wave:

a. The weak shock is characterized as a Glasstone pulse whose peak
overpressure 7 and positive phase duration t, are taken to be
funct fons of altitude and range as described below. It must be
admitted that the choice of a Glasstone pulsc is made for lack of
any better analytic reprcsentation of the detonation shock wave.
To our knowledge no detailed analysis has ever been made of how
adequately the Glasstone pulse represents the very low frequency

components of the detonation shock wave.

b. Based on test observations it is assumed that t+ fs much smaller

than the far-field perfod T. Usec is made of this assumption in
t
expanding the far-field amplitude as a series in-ft and keeping

only the first non-zero tem.

¢. The shock front, except where it intersects the ground, is assuncd
to be spherical. This assunption is only intended to apply to the
portion of the shock which is effective In exciting the Lamb mode.

It need not apply, for example, to the upwird going shock front.




This assumption will be correct if the shock becomes essentially

sonic within an effective scale height in the direction in question.

For low altitude detonations the secondary shock which results when
the direct shock is reflected from the ground is assumed to make

a contribution to the far-field amplitude equal to that of the
direct shock. The fjustification for this assumption is that for a
low altitude detonation the secondary shock at sufficiently large
distances from the burst point has essentially the same amplitude
and radius of curvature as the direct shock. Furthermore, the
secondary shock follows the direct shock within a time which is
small compared to the periods observed in the far field. For a
contact or surface burst the secondary and direct shock are of
course the same, although the amplitude may be reduced due to
energy expended in digging a crater, etc. This assumption restricts
the present theory to low altitude detonations (less than say 15 ‘am).
For sufficiently high altitudes the radius of curvature of the two
shocks may be very different and the time lag between the shocks
may be comparable to the far field period. In this case we would
expect interference effects to occur. The high altitude case has
not teen investigated.

The result of the preceding steps and assumptions is Eq. (A-30)

of the Appendix:

¥
- 0 2(2-y) 1
Ps - s Iy 2
r? (sln L ¥ i ; td
e r.

= » e ;(ro.z)tf (r ,z) de (A-30)
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where:

P, = pressure amplitude of the far field Lamb mode

L

Ps = gsea level pressure

5, - cylindrical matching radius (to be discussed below)
By = earth radius

r = great circle distance
y = ratio of specific heats
H = gcale height

1, = characteristic dispersion time which is approximately a quarter
of the far field period T.

Ai = derivative of Airy function with respect to its argument.
t = time after arrival of the far-ficld acoustic signal

¢ = gsound speed

Az = vertical distance relative to height of burst

= altitude relative to sea level

= peak overpressure of weak shock

t, = positive phase duration of weak shock

To proceed from Eq. (A-30) {t is necessary to assume a specific
spatfal dependence for T and . We take t, to be given at a small
radius Ro. where n(Ro) = .1, by the problem M results for a homogeneous
atmosphere with ambient pressure equal to the ambient pressure at the
burst poinut. Ro is also taken from the problem M results and both
t+(Ro) and Ro are scaled according to Sachs scaling. At the spherical

2 .

radii "J&zz ¥ 5 R, where * and t, are required in Eq. (A-30) thesc

quantities are ottained from the values at Ro by using Reed's theory

(5)

for weak shock propagation in an exponential atmosphere. After
some labor it is found that Eq. (A-30) can be reduced to be written
solely in termus of the horizontal values of the shock parameters T and

t+:



- e 1/y
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(ro. r.)l:+ (ro.z) rof - Ai [‘ + yJ (A=44)
y d
0
where z is the height of burst and the new integration variable
B "zz + r2 -r

. | 0 0

"4

Lquation (A-44) is essentially fidentical to the result of

Pierce and Posey. This is in spite of the fact that we have used a
distinctly different shock model, one which includes the effects of an
exponential atmosphere. This result occurs because in the integral of
Eq. (A=30) the effect of the exponential atmosphere on the shcck
parameters tends to be cancelled by th: Lamb mode weighting factor
VIV S il e el purely geometrical effects.

Now, the f{irst maximum of the far-field amplitude P, (-::,

’ -
occurs at about t = 1y For t = 4 the quantity Ai E-fngoccurring in
"y

Eq. (A-39) is shown to be significant only between about 0 < y < 2.
Truncating the y integration at y=2 corresponds to an effective upper
limit on the 4z values of interest of 4z » thd. that is about a half
wavelength of the far-field disturbance. Typically this means that
the shock at 42 values of at least up to 60 km contribute almost equally
to the Lamb mode excitation. This is the basis for our statement that
features peculiar to a limited portion of the shock front, such as the
existence of a precursor region near the ground, cannot dominate the
Lamb mode excitation.

It now remains to choove the matching radius r, which occurs

in Lq. (A=44). Physical arguments are given in the Appendix that this



should be done in the following way: We make a Fourier analysis of the
Glasstone pulse and assume that each frequency component within the
pulse propagates at a group velocity given by the Lamb mode dispersion
equation. The matching radius r is detemined by requiring that at

r the low frequencies fu N'——l—- wvhich will be important in the far
o \ td(r)
field must have propagated ahead of the largest amplitude frequency

1
components of the weak shock fuw '?:7?:7')' The basis for this

criterfon is that while the low frequency components are located
behind the shock front they will gain energy from the higher freyg icy
components, but once they move ahead of the higher frequencies their
propagation should he amenable to a linear treatment. A more detailed
statement of this argument is given in the Appendix.

This criterion assumes the form:
t+(rn) ~ td(ro) (A-54)

vhich serves to determine T, Equation (A-54) has an additional inter-
pretation: Suppose we start with the near field disturbance and follow
its development to increasing radii by means of weak shock theory. In
addition suppose we take the far-field disturbance and carry it back
toward the detonation by means of the Lamb mode theory. According to
Eq. (A=54) the matching radius is the distance at which the dominant
frequency content of the two disturbances becomes equal.

It turns out that for small yields :d(r) > t, (r) for all r

at which the shock is weak. In this case we use conventional Sachg

scal ing ro al|=— ,» where Y {8 the detonation yield. The constant

of proportionality is chosen to make r, (% )n cont fnuous function in
b

making the transition to the large yield case where tq. (A=-54), rather
than Sachs scaling, is used to determine ro.

The detonation shock parameters enter into Eq. (A=44) in the

2 =N D -
form n(ro.z)t+(rn,z)ro. Since for a weak shock the quantity

- 10 -



— = 2/3
*(r.z)t+(r.z)r is proportional to (!-) and independent of r this

P
b
means that the far-field amplitude PL is just proportional to
Y 2/3 Y
e t,(r ) which increases more rapidly than o— when r_ is determined
b o Pb o

by Eq. (A-54). The result of this analysis is the following*:

-5 1/y-1
p . k.1 x 10 1 [P
1 1 g
¥ r.é sin r | ? (t‘.xd):"2 . s/
el
) 3 r I
Yy 4 t
Y Q|+ oA -y (A-69)
"b'oj Aot T T

where PL is in atmospheres, Y in kT, and ct, and L in km. The

d
“correction factor" Q is:

]
- ®
Q +£ “‘x_ P—b.] Y_>!:
’ & ] -
.Ih 3 . Y Pb Pb Ps
®
.1, %‘5%‘; (A-75)
b~ b

The critical yiel? to pressure ratio is given in terms of Pierce and

Posey's dispersion parameter hkk by:
3/2
e 3/2 Mt sec .
e ‘oo(hkk) atmospher » k-9l2 ol

* The corresponding constant in the work of Plerce and Posey(z) would
appear to be 3.2 x 10=3 rather than our value of 4.7 x 103, This
difference prob1bly arises prinarlly from their choice of nt2 To as
(3.4 x 102)(.33)2(1.61) = 6.1 x 103 km/sec2 for a 1 kT sea level

detonation. Based un problem M(4) we 1ave taken ntfro = (.1)(1/3)2(.9)-10

« il =

-2



The quantiie h“\ is t:dependent of frecuency but fs a function
of atmospheric conditlons near the burst (we only rejquire “kk in
g, (A-66) out to the distance r“) as well as the direction of propa-

k
pation. For this reason [t appears that -:,;- an only be calceulated
1
numer ically in conjunction with a detalled atmospheric model for condi-

tious near the burst pojnt,

hevertbeless, as discussed in the next section, it is
possihle to see some evidence In the low altitude test data of the
breakdown of yield-impl ftude proportional ity for very large yield

detonat fous.

2.4 Comparison of Tueory with Test Data for Large Yiclds

There Is at least a suggestion in the (est data that very

large yields do on occasion produce anomalously ifarge far=ficeld ampli-

Po(L= I) \/:;in r/;__ 2/1
tudes. According to Lg. (A=64) the quantity ——-° * o

Y oY) d
is supposed to be o coastant for near surface detonations.  Taking
Pi("-‘d) to be about lalt the pressure amplitude tirst poeak to throush

pfpt' and L be about a quarter of the far-ficld period T, we have

It‘pt S/ sin r/ro 3/2

used the data presented in Ref. 4 to plot Y vs. v i
in Fig., 2.1, dote that the plot is semi logarithmic. 1he detonations
used are the Soviet explosions of (a) L0 September, (b) 11 September,
(¢) 14 September, (1) 4 nctober, (e) 6 October, (f) 20 October,

() 23 October, (L) 30 dctober, (i) 31 October, 1961, and the U. 5.
explosions of (J) 4 May, (k) 10 June, (1) 12 June, (m) 27 .June, and
(n) 11 July, 1962, Some detonations occur In Fli, 2.1 more than once
because data from several stations are used,

The vertical lines in Fig, 2.1 have been arbitrarvily drawn at

p—

I_f;p'.t' Vo sin :'/rc . B u=bar (

x Se 25 910 < 100 e:«-c)'j/‘. The average valuce
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of 25 Eﬁ%EE (100 sec)3/2 corresponds to a choice of sound speed
¢ = .31 km/sec in £q. (A-64). The detonations which lie outside the
large amplitude boundary do tend to be large yield detonations. For
example, 58 and 24 Mt at two stations lie outside, 25 Mt and two 9Mt
detonations also lie outside.

Figure 2,1 provides some indication of the possible breakdown
of yield-amplitude proportionality. However, we should caution thnt
some of the deviations may be caused by propagation rather than source

effects and furthermore that some of the yield estimates, which are

based on seismic data, may be in error.

2.4 Conclusions

We have found that the shock front extending from the ground
to many scale heights above the ground is of almost equal importance
in determining the far-field Lamb mode amplitude. Because of this,
the far-field amplitude should be relatively independent of phenomena
peculiar to any small portion of the shock front. In particular,
ground effects such as the presence of a precursor should not play
a very important role.

For large yield, low altitude detonations we have found a

far-field amplitude dependence which varies as Y [1 + K%. in %; ],

where typically Y* is the order of 10 Mt for a sea level detonation.
This dependence arises from a detailed consideration of the mechanism
by which the low frequency components cf the near-field (shock)
disturbance become spatially separated from the high frequency com-
ponents. The precise value of the critical yield Y* where yield-
amplitude proportionality breaks down is determined by atmospheric
conditions near the burst as well as the direction of propagation and
must be determined by detailed numerical calculations. WNevertheless,
in analyzing the test data we have seen some evidence that very large

yields do on occasion produce anomalously large far-field amplitudes.

- 14 -



Finally, we note that a number of potentially important
source effects can be explored within the framework of the present
theory. The most important of these effects, which we have not investi-
gated, are probably related to the presence of a secondary shock front
due to ground reflection. We expect that at low altitudes the effect
of the secondary shock in determining the far-field amplitudes is
approximately equal to that of the direct shock, but for higher alti-
tude detonations interference or destructive effects between the two
shocks may occur. It would be desirable to subject these ideas to a

quantitative analysis.

- 15 =



3. VARIATION OF FAR-FIELD HIGH FREQUENCY ACOUSTIC
PERIODS WITH YIELD AND HEIGHT OF BURST

3.1 Introduction

This portion of the report is concerned with detonation-
produced infrasonic signals which have periods between about 1 second
and 1 minute. These signals have been far less extensively studied
than the long period (3-10 minute) acoustic-gravity waves discussed
in Section 2.

The short period disturbances are difficult to treat
theoretically because their propagation is sensitive to small-scale

- g
(7,8 has calculated

meteorological phennuena. For example, Meecham
that signals in the second to minute period range have a substantial
probability of encountering a diffracting wind duct in propagating
between the ground and an upper boundary at about 50 km altitude. On
each encounter tlie acoustic signal is split and a small fraction of
the energy is lost from the main pulse. Accord.nc te Meecham, since
the propagation path to large distances involves a large number of
transits between the ground and the upper boundary. the main pulse
eventually becomes so degraded at large ranges that it becomes lost
in the multiplicity of pulses. In fact, as Meecham notes, the far-
field signal is observed to consist of a large number of apparent
pulses extending over a time interval of an hour ov wore. He attri-
butes the extended signal duration to horizontal refraction by large-
scale weather fronts.

Meecham's findings are related to the degradation of pulse
amplitude with range. We are concerned with the far-field pulse period
and here the situation is quite different. We believe that the period
of the main pulse is relatively unaffected by pulse splitting phenomena.
In particular we find, as outlined in the subsequent sections, that
the disturbance period is essentially determined after only a few

transits between the ground and the upper boundary; that is, before
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pulse splitting has had an appreciable effect. A corollary to this
finding is that the far-field periods have a very weak dependence on
range.

The model ¢n which the anciysis is based follows Meecham in
describing the upper boundary as a reflecting plane at about 50 im
altitude. This is the mode of long-range propagation observed for
infrasound from rockets.(g) The precise altitude of reflection, which
is an important parameter in the theory, is determined primarily by
the direction of signal propagation relative tu the winds at about
50 km altitude.

In our model the period observed in the far-field is pru-
portional to the positive phase duration of the near-field shock wave.
The positive phase duration Iincreases as the shock propagates and this
effect is calculated by means of weak shock theory. This is the novel
feature of our analysis, namely that it includes nonlinear weak shock
effects over large distances.

To obtain starting values for the application of weak shock
theory we use modified Sachs scaling. This procedure has been demon-
strated to be superior to ordinary Sachs scaling for prediction of peak
overpressures in an inhomogeneous atmosphere. We extend the concept
of modified Sachs scaling to apply to prediction of positive phase
duration as well as peak overpressure.

In Section 3.2 we develop the weak shock propagation model
and fn Sectfon 3.3 we obtain starting values for this model using
modified Sachs scaling. The theory is then used in Section 3.4 to
derive scaling laws for the far-field period. Specifically we find:

a. The height of burst dependence is very wealg for detonations in

the lower atmosphere it is the order of (1 + 4; 3 )where z is the
height of burst in kilometers.

b. For yields small enough that both weak shock theory and modified
Sachs scaling are valid the yield dependence is approximately

Y1/3. For very large yields the situation is uncertain.
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c. Far field periods are found to depend on the altitvde of the upper
z /4l
reflecting boundary, Z approximatelv as ¢ o 8% uhere uq is the

atmospheric acale height. The altitude A is itself primarily
determined by t'i: direction of propagatlon relative to the winds
at about 50 km.

3.2 Propagation Model

In this =ectfon we derive the baslc equatlon relating the
perioud of the far-field high frequency acoustlc signal to the nvar-
field shock parametcrs,

We assume that the signals of {nterest In the far fleld are
the ones of largest amplftude. Furthermore, we assume that the perlod
of these signals corresponds to the perlod of the larpest amplitude
Fourier components of the weak shock wave. Characterlzing the shock
(6)

wave as a Glasstone pulse with positive phase durattan t, we find

that the largest amplitude Fourier component lws a period:

T - 2“(+ . (3"’)

The problem is thus to calculate t+,which quantity will
increase with {ncreasing distance from the detonatfon. To calculate

we use Reed's weak shock equations for an

(5)

the evolution of t,

{nhomogeneous atmosphere:

Y }
a0 Yo fols Pro) (3-2)
PO "Pr )T, \ o
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- r
‘4 ! "o fo P(ro) dr

ol Ll mar () F"J ’ (D
5 ct, ;o

wvhere F%%T vt aud P(r) are the values of relative overpressure,

positive phase duration, and ambient pressure at a distance r from the

sp
detonation, FT;P)' t:. and P(ro) are the same quantities at a smaller
o

distance T, ¥ is the ratio of specific heats, and c is the sound speed.
These equations are written for a spherical shockwave. In

the rcal atmosphere the shock wave is refracted and becomes non-spherical.

However, hydrodynamic calculations at the Air Force Weapons Laboratory

have shown that to a very high degree of approximation, for an exponential

atmosphere each portion of the shock front can be regarded as propagating

independently with its own radius of curvature.(lo)

The equations are
also written for an N wave pulse form. Groves has examined the difference
between N wave and Glasstone pulse propagation laws. He finds the
difference to be very snall.(ll)
The dependence of t, on values at r, may be eliminated by
taking the logarithmic derivatives of Eqs. (3-2) and (3-3) and combining

to obtain:

ol P
% eV :::) +P(r)3— Ty A (-9
l 23 " For P(r)
For an exponential atmosphere this becomes:
oyl e
- T .
Jdemto
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vhere

P

TOR (3-6)

ner 2— N o

and H is the effective scale height in the direction of interest from
the burst. The negative and positive signs in Eq. (3-5) correspond to
upward and downward shock propagation, respectively.

Applying Eq. (3-5) at the starting radius D above the burst
and substituting back in Eq. (3-2) yieclds:

5 7—7“' ] -r_/an C o
t (r) = T + n(r ) f Pl )
[1 + n(r )]

where P, 1is the ambient pressure at the burst altitude z.

(3-7)

The range dependence of t, is contained in the integral:
i Pb dr
Py ¢ ° -
r

winich 1s to be done over a propagation path such as illustrated in
Fis . 3-10

It is convenient to rewrite Eq. (3-8) as:

I = 2: I2 - (3-9)

k=1

where the index L corresponds to each straight line segment as shown in

Fig. 3-1, and L i{s a large number for the far-field disturbance. We now

& 200 =



(3) \ (¥

FIGURE 3-1:

ASSUMED PROP'GATION PAT.
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turn to the task of summing the series in Eq. (3-9). Assuming that the

radius of curvature is unaltered upon reflection we obtain for each

term:
z-2; r
L8 W '"% @ L (3<10)
L 8 ” . -
-(t=)z /2, 1tz -z (i-1) z - 7
0 N 9 (S . O
Py . \Ey 7 I R (oLl
Lodd . L =
i 41
-z/it_ iz /2u (i-1) z - z z -7
_ s 0" "8 | . o 1 & 0 R
1, e e \E, i = By o= . (3-12)
teven N & 8 o - 8 -

where "s is the atmospheric scale height in the vertical direction and

the exponential integrals E, and L, are defined as:

i 1
hl(y) - Jo de , (3-13)
y
A
' [ ’
E‘(y) - 7 T 9t . (3-14)

For large y Eqs. (3-13) and (3-14) can be approximated as:

- _e_ -
y
. e -
E‘(y) = (3-16)



z -z
o
21
8
in Eqs. (3-11) and (3-12) since these are smaller than the first tems
(z - 2)
les *
that most of the contribution to the integral I, and hence most of the

On the assumption that >> 1 we may then neglect the second terms

by a factor of exp - Physically this is related to the fact

poritive phase lengthening, oL urs at the upper reflecting boundary
i~
¢ P(p)

Using the asymptotic forms, Eqs. (3-15) and (3-16), for the

where the quantlty-' occur ing in Eq. (3-8) is largest.

remaining exponential integrals which are functions of 2z we obtain

the following expression for 1I:

-1 a htl'le (b 2y exply ) Lo T2 YL Tz 3
- I | (o] o !
: (=] L=2
Ltodd teven J
2, -z 1
ye Ei,zu diig exply, 2u s BN
2-1
todd
s (12)
The summation can be further approximated for zo >z
JL m
. 1 £ " et
Glo R.zo-z zo ae 2m=1
i=] m=1
itodd
" B B
B "L 1 7 2
: 2(l‘-o»tnn)‘l»fl.nZ*——z--b6 - =
o 8m
=-:—[1+ i‘.nv’;] . (3-18)
o
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where I' is Euler's constant (.57721) and Bl. 82 -=- are Bernoullt
numbers (1/6, 1/30, --).
The first term in this last expression comes from 11; hencc

a somewhat hetter approximation than (3-17) is:

‘ -‘— -
‘z«-z {:‘
o 0

(3-19)

-
+
b d
=]
8)
1
™
e
Pty
-

where m is the number of reflections occurring at the upper boundary.
Combining Egs. (3-1), (3-7), (3-8), and (3-19) we finally

obtain:
iy Yo %o
7 & IE@E ) e o r, -rn/2n
T == 0 V1 -2 -+ ar) e
l'o 24 o
l--ﬁ-l--fn(ro)
- .'!
= z -z r, :
[1 + fn Vm hi 2“3 - Ei iﬁ’ J— o (3-20)

3.3 Starting Values for Weak Shock Parameters

AP
It now remains to determine the shock wave paraneters FT;ET
o
and n(ro) at r . To do this we use modified Sachs scaling. According
to modified Sachs scaling the relative overpressure, in an inhomogencous
atmosphere, at a distance r from an explosion where the ambient pressure
is P(r), is just the same as i<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>